INTEGRATED SYSTEM FOR HYDRAULIC SIMULATIONS

Giang NGUYEN, Viera ŠIPKOVÁ, Peter KRAMMER, Ladislav HLUCHÝ, Viet TRAN, Miroslav DOBRUCKÝ, Ondrej HABALA

Institute of Informatics Slovak Academy of Sciences Dúbravská cesta 9, 845 07 Bratislava, Slovakia e-mail: {giang, sipkova, krammer, hluchy}.ui@savba.sk

Abstract. The work described in this paper is aimed at applying and co-operating of modern information technologies and mathematical modeling to make a risk analysis of the water-supply in a big city. It is instrumental in the investigation of the hydraulics of water-supply systems using the simulation model EPANET executed on the underlying high-performance computing infrastructure. The simulation process is integrated with the GIS environment in order to correct input data and visualize the simulation output. Input data for the model can be modified directly within the designed scientific gateway which enables hydraulic domain experts to interact comfortably with the HPC capacity. Furthermore, the system includes some data mining capabilities forming bridges between the hydraulic data storage and available hydrological measurements focused on the water consumption modeling and predictions. In simulating the main emphasis is given on to optimize the measure of similarity between the mathematical model and the real system in order to obtain reliable results.

Keywords: hydraulic simulations, water-supply system, high performance computing, scientific gateway, data mining, hydrology scenarios

Mathematics Subject Classification 2010: 68U35
1 INTRODUCTION

Mathematical modeling and computer simulations play a significant role not only in scientific and technical disciplines, but also in economics, social, public-legal and private sphere. In order to protect the environment and population safety there is an increasing pressure from various organizations on enforcing computer simulations of natural disasters, as well as various risky technical, economic and urban events that are associated with the damage of property or attempting the health or life of people. Computer simulations represent some kind of the approximation of real systems and provide one of the most effective tool for examining the nature of a problem and its rational explanation. They are beneficial in case of investigating different scenarios that are impractical, financially expensive, impossible or too dangerous to run in real life.

In the last years, Geographic Information Systems (GIS) have become an integral part of our living. The rapid development of information technologies along with the vast amounts of data observed shifted the GIS employment to the higher level. GIS systems enable to join graphic representations with entries stored in database. On such data structures many kinds of actions can be performed since the GIS technology combines the common database operations, e.g. task assignment and statistical calculations, with the unique capabilities of displaying and spatial analysis provided by the map. These data constitute naturally a good basement for mathematical modeling and computer simulations.

The term “simulation” refers to the process of using the mathematical representation of a real system, called mathematical model. Constructing a mathematical model is a challenging, systematic work that draws on many skills and employs the higher cognitive methods of interpretation, analysis and synthesis. It includes the observation and investigation of phenomena, followed by designing the concept of the problem, its parameterization, and the creation of the computer simulation model. The role of computer simulations is to find a solution to problems which enables for the given scenario to predict the behavior of the system from a set of parameters and initial conditions. The correctness of the mathematical model and the simulation itself is assessed on the basis of experimental results, verified theory or the long-term observation of the reality.

Simulation models can take many forms, they may range from simple regression expressions up to complex numerical solutions. Generally, the complexity of a simulation model is a compromise between the model simplicity and its exactness and reliability. Along with the improvement of the model accuracy there grow gradually also requirements on the precision of underlying data, computing power and the time needed for simulating. An imperative part of the simulation process is the verification and validation phase, in which it is found out whether the mathematical model describes the real system with the sufficient accuracy, that is, whether results obtained from the simulation are identical with results observed from the real system in a declared degree of similarity. For this purpose it is necessary to investigate and solve calibration and parameter setting of the model which is based primarily on the
analysis and comparison of the simulation output and results obtained from actual measurements and experiments. To achieve this objective, a large number of simulation runs must be performed, operating with many input scenarios, varying input parameters and boundary conditions. This represents a challenging task requiring the high performance computing resources, a considerable amount of memory and storage space, experience of domain experts and also the employment of supporting software tools, whose main function is to manage the whole simulation process in simple and effective way.

The body of this paper is organized in five sections. After the introduction, the section 2 outlines the mathematical approach to describe the water-supply system. Section 3 presents the technological integrated concept of the system including interconnected frameworks. Section 4 aims to the work of each component and illustrates the potential of hydraulic simulations running on high performance computing infrastructures (HPC/Grid/Cloud). The conclusion of the work is given in the section 5.

2 MATHEMATICAL MODEL OF WATER-SUPPLY SYSTEMS

A water-supply system (particularly, the water-supply system in Bratislava analyzed in our work) can be defined formally as an undirected graph

\[G = (V, E) \]

containing a set of edges (links) \(E \) and a set of vertices (nodes) \(V \). Each vertex \(v \in V \) represents a junction where links join together, a water source point or a water delivery endpoint. An edge \(e = (u, v) \in E \) connects a pair of vertices \(u \) and \(v \), where \(u \neq v \). The graph may contain a lot of open endpoints, e.g. connections to each house. A water-supply system can also be described as a directed graph, where starting and ending vertex are marked for each edge.

![Fig. 1. Graph of the water-supply system with a number of endpoints](image)

The graph \(G \) is a vertex-evaluated graph. To each vertex \(v \in V \) the geographical
position is assigned as a triplet:

\[g = (x, y, z) \]

where:

\[x, y \] - are the real coordinates for the co-ordination system globe (particularly, in Slovakia the coordinate system is “S-JTSK Krovak EastNorth”)

\[z \] - is a coordinate which expresses the height above the sea level in meters

Additional features representing the set of node properties may be assigned to each vertex \(v \in V \) as an n-tuple:

\[ov = (ov_1, ov_2, \ldots, ov_n) \]

where:

\[n \] - is the number of features assigned to \(v \)

\[ov_1, ov_2, \ldots, ov_n \] - are various features, e.g. the elevation, demand, head, pressure, quality, etc.

The graph \(G \) is also edge-evaluated graph. Additional features representing link properties may be assigned to each edge \(e \in E \) as an m-tuple:

\[oe = (oe_1, oe_2, \ldots, oe_m) \]

where:

\[m \] - is the number of features assigned to \(e \)

\[oe_1, oe_2, \ldots, oe_m \] - are various features, e.g. the length, diameter, material, pipe roughness, flow, velocity, headloss (pressure), status (open, active, closed), chemical reaction rate, etc.

The geometry of the water-supply system is transformed into the geometry between points and lines (see Fig. 2). In routine practice, it happens often that during the digitalization process various impurities are carried into the GIS data. For example:

- lines do not intersect at the crossing point,
- small gaps/spaces are between two lines or between a line and an endpoint,
- points that do not lie on lines although they should, e.g. pumps or valves on pipes,
- duplicate lines.

Such defects induce errors and have to be eliminated. They give up false information and can spread increasingly distorted or incorrect information to the further processing as well as to simulations to predict situations. To eliminate these impurities
geometrical vector computations [6] (the dot product, cross product, line to point distance vector computation, etc.) are used in various implementation approaches, e.g. using scripting languages and/or existing geographical tools offered by GIS environments.

3 SYSTEM ARCHITECTURE

The purpose of the research of the water flow hydraulics in pipes of a water network is to gain insight into the behavior of all components of the water-supply system, starting from the water acquisition, water exploitation, its treatment for drinking, water transport, business issues, and solutions for water losses. A computational simulation model together with the measured data of the real water distribution system of a large city presents an effective tool for doing hydraulic research. Hydraulic models that are capable accurately and realistically simulate reactions of the water-supply network under various conditions and for many different scenarios are becoming more and more required by its planning, design and analysis. The mathematical modeling itself consists in replacing the actual water distribution network by an idealized image in the form of mathematical-data model, and in the verification of the model substantiality based on data sources. The essential must in modeling is that the idealized system fits as close as possible to the actual system, and that parameters of the system conform sufficiently with the objective behavior of the real network.

The trend in the development of software tools for simulating pressure flow is directed towards the integration of mathematical modeling with GIS technology which couples the database information with geographic information. By compu-
tational simulations of pressurized networks the model EPANET (US Environmental Protection Agency) [7] is considered to be the world standard. It became the mathematical core of multiple commercial products, for example, MIKE URBAN [9], WaterGEMS [10], KypiPE [11], etc. Another well-known software systems, commercial and public available, designed to simulate hydraulic phenomena are: InfoWater [12], H2ONET [13], AFT Fathom [14], SynerGEE [15], ERACLITO [16], CROSS [17]. Many of them are fully integrated with GIS software tools, such ArcGIS [19] or QGIS [20]. In our work, following the requirements and working experience of hydraulic domain experts [21] [22] the tool ArcGIS was chosen for operating.

Model EPANET is a computer program that performs extended period simulation of hydraulic and water quality behavior within pressurized pipe networks. The input for EPANET is the mathematical representation of a water distribution network consisting of pipes, nodes (pipe junctions), pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, and the concentration of chemical species throughout the network during a simulation period comprised of multiple time steps. In addition to chemical species, the water age and source tracing can also be simulated. EPANET is designed to be a research tool for improving our understanding of the movement and fate of drinking water constituents within distribution systems.

Fig. 3. System components

The architecture of our system integrating several instruments to practise the hydraulic research is presented in Fig. 3. The system is user-oriented and is designed primarily for hydraulic domain experts who may enter their own knowledge into models and input scenarios. The results of simulations are transferred back to the
end-user for further processing, such as to interpret, analyze, visualize, or to utilize them in real operational services. The main components of the system are described in the following.

- Tools to analyze and clean GIS data: they prepare the input GIS data for simulating. They remove data impurities as described above in Sec. 2 applying the available geographical ArcGIS routines and designed python scripts.
- The HPC environment including the deployed simulation model EPANET.
- The tool to realize the parametric study with hydraulic simulations using the EPANET.
- The data mining tool: it employes several machine learning models operating on historical data (about pumps, reservoir, etc.) and results of hydrological measurements related to the water consumption modeling and predictions.
- The scientific gateway and the underlying web server: it provides a comfortable bridge to the HPC environment to realize hydraulic simulations. It offers functionalities to manage several computing environments, and additionally, it enables to create new scenarios through direct modifications of some input quantities.
- The monitoring daemon included in the application server: it provides a remote access to the selected HPC platform, which is in common not visible to end-users.
- Tools to post-process the results of hydraulic simulations: they transform the simulation output written in the plain text format into the CSV (Comma Separated Values) format [23], and then to MDB (Microsoft Access Database) format [24] for easy data importing back into the GIS environment.
- The system also provides the hydraulic domain experts by the support in their work by tasks “Preparing 3D data and digital terrain model” and “Data visualization”.

4 HYDRAULIC SIMULATIONS ON HPC ENVIRONMENTS

The simulation model EPANET 2 [8] was deployed on the compute cluster SIVVP [25] dedicated for high performance computing. The cluster can be accessed locally, or remotely using the Grid technology [26, 27, 28], as it is integrated in the “European Grid Infrastructure” EGI [29]. The execution of simulations on the local cluster can be realized by means of the system PBS (Portable batch System) [30] and the execution of simulations on EGI infrastructure through the Grid middleware gLite/EMI [31, 32]. EPANET 2 is also pre-installed in the virtual disk image on the Cloud infrastructure IISAS-Fedcloud which is part of the “EGI Federated Cloud Infrastructure”. It was designed in cooperation with several European projects: EGI-InSPIRE [33], Helix Nebula [34] and Cloud Plugfests [35]. On IISAS-Fedcloud the middleware OpenStack [36] is installed, along with tools for the integration into the federated Cloud infrastructure.
The available middleware services offered by HPC infrastructures deliver most of the functionalities necessary for the development and running of applications, however, for non-informatics scientists, they are mostly too complex and require non-trivial knowledge to be used correctly. To facilitate the process of the submission and efficient execution of simulations some software tools, working on base of the underlying middleware, have been designed. They are capable to isolate the end-user from the middleware infrastructure taking on all of the deployment burden.

4.1 Scientific gateway and Web server

The scientific gateway for hydraulic simulations (look at Fig. 5) is implemented using AJAX technologies. AJAX [37], an acronym for Asynchronous JavaScript and XML, represents a set of techniques useful for the development of interactive web applications enabling to change the site content without the need of complete page reloading from the server. In comparison with traditional Web applications, AJAX applications provide the user with the more comfortable experience requiring only modern (i.e. later) web browsers. AJAX is not an independent programming language or a simple technology, it is the combination of the following elements, but not necessarily all of them.

- HTML and CSS languages for describing the structure and layout of information in the display.
- DOM (Document Object Model) interface associated with the JavaScript to dynamically display and interact with the presented information.
- Methods for data exchange between browsers and the server without the need to restore the current page, the most commonly used is XMLHttpRequest object.
- Formats for data transmission by the browser including the plain text, XML, HTML and JSON (JavaScript Object Notation). Such data can be dynamically generated by scripts on the server-side.

Hydraulic domain experts utilize the scientific gateway as one of the forms to access and exploit the HPC computational power. Using the gateway, they do not have to concern with the target compute platform, whether their job is executed directly on the HPC cluster, or it is submitted for execution to the Grid or Cloud infrastructure. Moreover, the gateway has capabilities which enable to generate new input scenarios by modifying some quantities within the input data for hydraulic simulations. It is possible to change time-step parameters for simulation, output report parameters, requirements on computational power, and water consumption demands for various consumer groups (industrial, hospitals, schools, households, gardens, etc.). One instance shows the snapshot in Fig. 4. The list of gateway functionalities is extensible considering the needs of domain experts. The gateway approach is known and it has already been applied for handling grid applications [38, 39], however, in most cases it is too general and requires deep knowledge to be customized for a given scientific
domain. Our approach is lightweight, user-oriented and applicable not only to Grid, but to HPC cluster and Cloud as well.

Usually, the high performance computers, our cluster inclusive, are characterized by the high hardware and operating costs. Grid, said very briefly, interconnects high-performance compute centres. Such centres must provide simultaneously and continuously various services to many users, therefore, they have high requirements on the security features. Generally, in the security sphere a web server is considered to be a weak element. On the ground of its potential vulnerability, our Web server was installed separately. The role of the Web server is to communicate with the user and to collect all requirements necessary for submitting his job and performing
simulations. The gateway in the Web server is responsible also for the initial checking and validation of asked input values.

4.2 Application server and Monitoring daemon

While the function of the Web server is more or less passive, the monitoring daemon running in the Application server (see Fig. 5) plays the activer role. It monitors the user’s requests coming through the Web server and provides for the job execution following the given demands. The daemon is responsible for accepting job inputs, it must understand how to process them, i.e. it must be able to compose and submit the application along with input data. It masters also the technique of communication with the Web server. The daemon works either with the access authorization delegated by an operator or it can use the operator’s Grid certificate with a limited range of activities [39]. A valid certificate to access the Grid resources is based on the policies of Virtual Organization (VO). There are also another alternatives for the management of user identities [38], but they have been not implemented yet.

The job execution process through the gateway begins by sending a user request which is placed in the request pool of the Web server together with the requirements specification and input data collected by the interface. The user has the possibility to keep track of the job execution process. States displayed through the gateway interface are the following:

- **Waiting**: the state includes two cases - waiting in the Web server’s pool or pending for the submission in the Application server pool. These states were joined to one due to the fact that users are not very interested in implementation details.
- **Submitted**: the state is achieved when the job stands in a queue waiting for a suitable resource to run in the cluster or Grid.
- **Running**: the state indicates that the job is executing.
• **Finished**: the state indicates that the job is completed and its output results are transferred from the Application server to the Web server. The user can retrieve the output through the web interface of the gateway.

• **Cancelled**: the state indicates that the job was cancelled. The user can cancel his simulation request at any time, if necessary.

• **Failed**: the state indicates that the job execution failed, the user gets the error report as an output.

The gateway job states are a little different from the job states which appear in the cluster environment (PBS: *Held, Queued, Waiting, Running, Completed, Exiting, Suspend, Moved*) or in the Grid environment (EMI: *Submitted, Waiting, Ready, Scheduled, Running, Aborted, Done, Cleared*). They represent some combinations of both in order to provide a unified and simplified cases.

Our gateway approach is relatively generic and commonly usable. It can be adopted for carrying out not only hydraulic simulations but also other applications. We have used it for nanoscale simulations [40] and also for Quantum Monte Carlo calculations.

4.3 EPANET and Parametric Study

One of the supporting tool was designed to realize the parametric study performing hydraulic simulations with the model EPANET. The tool is built on top of PBS [30] and/or EMI [32] middleware. It serves primarily as a support mechanism in the process of calibration and verification of the model. In simulations input scenarios describing the water-supply network of Bratislava and its surroundings (the owner is “Bratislava Water Company” [22]) are handled. On the Cloud infrastructure the distribution of calculations in the parametric study is similar as on the local cluster,
with the difference that the role of PBS is superseded by the middleware OpenStack.

A Parametric study (PS) represents an important class of applications which arise in many scientific and engineering contexts. Typically, the PS is defined as a set of experiments, where in each of which the same program is carried out, but with a different set of input data. Due to the inherent parallelism, PS can be performed in a distributed fashion which can significantly reduce the execution time. In our case the set of input files can be divided into a number of independent parts of arbitrary sizes which may be processed separately in any order on different hardware resources. The tool is constructed following the Master-Worker parallel processing scheme, where the role of the Master is to manage the entire process of performing the PS with the given set of input files, while the execution of the application itself is accomplished through the Worker. The tool is implemented as a command-line based on the pair of executable scripts EPANET-Master and EPANET-Worker using one configuration file EPANET-Descriptor and services offered by the middleware of the target computing platform. The scheme of the tool is outlined in Fig. 6.

EPANET-Descriptor – is a configuration file which defines all information about the PS. It includes names of all files and folders accessed, options for simulation logging, and the number of CPU cores used simultaneously to perform the PS - the value of this entry determines also the number of jobs in the PS. Each job will be run separately on the allocated CPU core and will handle one or more input files.

EPANET-Master – represents an executable script which is started up on a user-interface machine. It consists of the following components:

1. At first, it accepts and checks all input parameters specified through the configuration file. Parameters values are passed to the subsequent operations.

2. **Input files Distributor** - divides the set of input files into subsets assigned afterwards to separate PS jobs for simulating. The number of subsets is defined by the number of specified CPU cores. The robustness of subsets is computed by a strategy to ensure that each processor (except the last) get the same workload.

3. **Job Executor** - controls the execution of simulations. For each job of the PS it prepares the job description file based on the input parameters and commands of the middleware, PBS for the local cluster, or JDL (Job Description Language) [41] in case of Grid. Job description files serve as an inputs for submission commands.

4. **Output Retriever** - is responsible for gathering results of all PS jobs. It monitors the execution status of individual jobs, and in case of their completion it transfers results from the computing resource to the user interface machine. At the end all output files are integrated into one archive file representing the final output of the PS.
EPANET-Worker – is an executable script which runs on the target computing platform. Its function is to perform the simulation consecutively with each file included in the assigned local list.

4.3.1 Data mining scenario and data preprocessing

Hydrological domain represents one of appropriate field for data mining application. Particular hydraulic systems represent deterministic processes which contain quite enough significant patterns and data relations. In this domain there are usually numerical attributes that are related to specific exact physical features, such as: volume, pressure, flow and water-level. It allows defining the task and using the statistical numerical prediction method. However, more error features has an influence to this domain except of these deterministic effects. These error features have dominant stochastic character. It is very difficult to model these errors physically but if we take into the consideration them, we are able to increase model quality and their predictions. The comparison of physical and statistical model can provide an interesting and inspirational view of presented problem. The use of the methods of backward reasoning from statistic models could bring the improvement of physical models in the future. In the last years the hydrological data from rivers, water reservoirs and drinking water distribution systems are collected and stored in warehouses and databases automatically. It provides the main factor for obtaining of large data set and then successful statistical model application. By the collecting of hydrological data (in this case data from water distribution system), we are able to use data in data mining process for many different tasks:

- time estimation of water consumption of reservoir during the pumps are turned off,
- time estimation for filling up of reservoir to defined range,
- defining of optimal strategy for water chlorination to get the chlorine concentration in specified range,
- defining of effective strategy of water pumping into the reservoir by using of night electrical current.

Doing our exploration we used historical water consumption data from the surrounding of Bratislava, especially Kuklovska locality. These data are stored in CSV (Comma Separated Values [23]) files, each of them contains information about the consumption during the period of weeks and appropriate time information. In the preprocessing phase, data files were integrated and chronologically sorted. In next step, data records were resample by using a biquadratic interpolation for arrange the constant time delay between two measurements.

It is appropriate to model water consumption for the weekdays and weekends separately, because consumption during the weekdays has a significant different distribution in compare with consumption during the weekends. In our experiment, we focus on weekdays, because weekend data set contains not enough records.
Time in day attribute (represented in minutes) was chose as a primary input attribute for water consumption modelling. Also other extra input attribute were defined based on part of year. This added input attribute contains a real number values between 0 and 1; 0 represents date 1. january, and 1 represents date 31. december.

4.3.2 Model training and testing

The water consumption depends on time and its graph is depicted in Fig. 8. Each point in this figure represents one performed measure. It is seen evident nonlinearity of relation as well as stochastic character in the graph. It is visible that the water consumption also depends on the air temperature. In consideration the fact that the air temperature data in specific locality had not been available, therefore we were obliged to use data coming from nearby locality. Weka tools [1] were used for models training with 20-fold cross validation for evaluations. Following machine learning approaches were used and compared:

- Neural Network of MultiLayer Perceptron (MLP): regressor contains 32 neurons in hidden layer with 0.01 ridge penalty factor and tolerance 1.0E-6.
- Radial Basis Function (RBF): regressor has also 0.01 ridge penalty factor, and use for regression 32 basis functions and tolerance 1.0E-6
Regression Trees M5P [4] [5] use traditional C4.5 algorithm for building the tree. M5P model were trained traditionally and with meta-learning methods

- Additive Regression [3] and
- Bagging [2] methods

The maximum information gain criterion is replaced with minimum dispersion criterion, and each leaf contains the linear regression model. Minimal records per leaf were set to 6. All three models use the pruning method and give similar performance ratings (Tab. 1).

Advanced learning methods - Bagging and Additive Regression [3] method, were also used with REP-Tree (Reduce Error Pruning Tree) and Decision Stump models. Trained models reached the solid performance results in evaluation phase. Relative absolute error, which is slightly above 36%, represents the positive result for modeling of significantly stochastic process.

4.3.3 Model quality measurements

For performance comparison were used Correlation Coefficient (3), Root Mean Squared Error (1) and Relative Absolute Error (2) criterions. Also relative squared error is more often used than relative absolute error, for representation of relative error. But the relative absolute error is the solid criterion, if the target attribute contains some zero values.

Let variables
• r represent the predicted values,
• y represent the actual values and
• N is the number of data records

then:

\[\text{empirical mean } \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i \]

\[\text{empirical mean } \bar{r} = \frac{1}{N} \sum_{i=1}^{N} r_i \]

\[\text{root mean squared error } \text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (r_i - y_i)^2} \quad (1) \]

\[\text{relative absolute error } \text{RAE} = \frac{\sum_{i=1}^{N} |r_i - y_i|}{\sum_{i=1}^{N} |y_i - \bar{y}_i|} \quad (2) \]

\[\text{Pearson's correlation coefficient } \text{PCC} = \frac{S_{RY}}{\sqrt{S_{R}S_{Y}}} \quad (3) \]

where:

\[\text{covariance } S_{RY} = \frac{\sum_{i=1}^{N} (r_i - \bar{r})(y_i - \bar{y})}{N - 1} \]

\[\text{covariance } S_{Y} = \frac{\sum_{i=1}^{N} (y_i - \bar{y})^2}{N - 1} \]

\[\text{covariance } S_{R} = \frac{\sum_{i=1}^{N} (r_i - \bar{r})^2}{N - 1} \]

Other criterions such as Mean Squared Error (MSE), Relative Squared Error (RSE), Root Relative Squared Error (RRSE) were also considered for testing purposes, where:

\[\text{mean squared error } \text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (r_i - y_i)^2 \]

\[\text{relative squared error } \text{RSE} = \frac{\sum_{i=1}^{N} (r_i - y_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y}_i)^2} \]

\[\text{root relative squared error } \text{RRSE} = \sqrt{\text{RSE}} \]

4.3.4 Model performances

It is evident, that water consumption variable depends on several physical variables, include information about weather. Temperature of atmosphere is a solid relevant candidate for adding input attribute, which represents information about weather.
But the atmosphere temperature for analyzed range of dates from Kuklovska location was not available. So atmosphere temperature from Kuklovska location was replaced by atmosphere temperature from Koliba Location. These two temperature sets are definitely not equivalent, or collinear, but they have strong correlation. The quality of models is markedly increasing after adding the extra temperature attribute (from the nearby Koliba locality) into the train dataset. The temperatures for these two locations have marked dependency.

Table 1. Comparison of models with the best performance for water consumption prediction

<table>
<thead>
<tr>
<th>Model</th>
<th>PCC</th>
<th>RMSE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging M5P Regression Tree</td>
<td>0.9337</td>
<td>2.934</td>
<td>36.243 %</td>
</tr>
<tr>
<td>Regression Tree M5P</td>
<td>0.9324</td>
<td>2.961</td>
<td>36.551 %</td>
</tr>
<tr>
<td>Bagging with REP-Tree</td>
<td>0.9319</td>
<td>2.972</td>
<td>37.078 %</td>
</tr>
<tr>
<td>Additive Regression M5P Regression Tree</td>
<td>0.9301</td>
<td>3.010</td>
<td>37.302 %</td>
</tr>
<tr>
<td>MLP-Regressor</td>
<td>0.9239</td>
<td>3.134</td>
<td>37.927 %</td>
</tr>
<tr>
<td>RBF-Regressor</td>
<td>0.9210</td>
<td>3.190</td>
<td>38.949 %</td>
</tr>
<tr>
<td>Additive Regression Decision-Stump</td>
<td>0.9117</td>
<td>3.382</td>
<td>38.128 %</td>
</tr>
</tbody>
</table>

The precision of models is evidently on higher level. Parameters of models are same, as for above Tab. 1. Some of models in Tab. 2 reached significantly higher quality than in Tab. 1. There are M5P with Additive Regression, and REP-Tree with Bagging. The improvement of relative absolute error is around 15%; Pearson’s correlation coefficient (PCC) of the best model is 0.9717, which is very positive result allowing using the model in many related problems and tasks, such as time estimation of water consumption or time estimation for filling up the reservoir. However, some of models reached in Tab. 1 worse performance (RBF-Regressor and

Table 2. Comparison of models with the best performance for water consumption prediction after adding atmosphere temperature attribute

<table>
<thead>
<tr>
<th>Model</th>
<th>PCC</th>
<th>RMSE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive Regression M5P Regression Tree</td>
<td>0.9717</td>
<td>1.935</td>
<td>20.932 %</td>
</tr>
<tr>
<td>Bagging with REP-Tree</td>
<td>0.9671</td>
<td>2.086</td>
<td>22.520 %</td>
</tr>
<tr>
<td>Bagging with M5P Regression Tree</td>
<td>0.9548</td>
<td>2.438</td>
<td>26.781 %</td>
</tr>
<tr>
<td>M5P Regression Tree</td>
<td>0.9532</td>
<td>2.479</td>
<td>27.753 %</td>
</tr>
<tr>
<td>MLP-Regressor</td>
<td>0.9409</td>
<td>2.773</td>
<td>31.517 %</td>
</tr>
<tr>
<td>RBF-Regressor</td>
<td>0.9008</td>
<td>3.556</td>
<td>49.300 %</td>
</tr>
<tr>
<td>Additive Regression Decision-Stump</td>
<td>0.8706</td>
<td>4.043</td>
<td>49.367 %</td>
</tr>
</tbody>
</table>

List of the best models after adding temperature attribute is shown in the Tab. 2. The precision of models is evidently on higher level. Parameters of models are same, as for above Tab. 1. Some of models in Tab. 2 reached significantly higher quality than in Tab. 1. There are M5P with Additive Regression, and REP-Tree with Bagging. The improvement of relative absolute error is around 15%; Pearson’s correlation coefficient (PCC) of the best model is 0.9717, which is very positive result allowing using the model in many related problems and tasks, such as time estimation of water consumption or time estimation for filling up the reservoir. However, some of models reached in Tab. 1 worse performance (RBF-Regressor and
Decision Stump with Additive Regression models) probably due to over-fitting effect. In future, we are planning to apply the model as submodel for effective strategy of water pumping by using of night electrical current and optimal strategy for water chlorination. Water consumption model will be connected as an input feature to chlorination model with the purpose to increase the chlorination model quality.

4.4 Post-processing of hydraulic simulations

Hydraulic simulations described in this paper produce output results in the structured text format which is quite specific and not very suitable for further processing or porting back to the GIS environment. Therefore, the transformation into the format CSV (Comma Separated Values) [23] is required and needed. CSV is a common, relatively simple file format which is widely supported by various applications and environments. Its most common use include the tabular data exchange between programs that use the native incompatible formats. Most of these programs support CSV at least as an alternative format to import and/or export data. In practice, it refers to the CSV files that:

- contain a clear text encoded e.g. ASCII, Unicode, etc. and clear format
- consist of records which are divided into the same number of fields separated by a reserved character as a comma, semicolon or tab.

Even within these general constraints variations of this format are used and many implementations allow users to specify the delimiter character, use quotes, etc. on different platforms for different purposes. CSV format is stricter defined as generic text format and it is frequently selected as a format for data storage. The process of importing data into different IDE work environments is easier and more precise with CSV data, as the freedom in TXT format often tolerate various bugs.

In our framework, the transformation of simulation outputs into the CSV format was implemented in Python language [42] due to portability between platforms and cooperation with geographic integrated environment GIS. An example of the output transformation from the text format (.txt) through CSV format (.csv) using python supporting scripts, and consequently to geographical database format (.mdb) using ArcGIS geographical tools. Illustrated example of color range indications for water velocity (one of simulation output attributes) in Bratislava water-supply system at 11h simulation time of the sixth scenario without group-consumer water demand modifications is shown in Fig. 9.

5 CONCLUSIONS

The solutions for each society or a global community must withstands requisition that professional users i.e. domain experts will consider adopting new methods if there is an incremental path, which avoids excessive learning barriers. That path must also allow them to balance potential gain against the risks of lost time and
opportunities while discovering how to apply the methods to their problems. The
transferability of methods and technologies is important, the turbulence of the digi-
tal revolution means that different groups are experiencing different rates of change
in their data environment. Our work aims to establish the support for hydraulic
domain expert category, so that they get a chance to contribute to solutions and

![Fig. 9. Water velocity (m/s) on pipe links by color range indicators](image)

![Fig. 10. Color range indicators - velocity m/s](image)
to innovate new data-intensive strategies. The conceptual framework is intended to allow independent thinking in each context, but also to allow collaboration and stimulation across the categorical boundaries. The technological architecture is shaped to facilitate that autonomy with communication when it is beneficial. This paper described briefly a core of our research work on environmental domain. More details on data preparation, data visualization, collaborations among partners, sensor systems, daily terrain work, difficulties and problem solving are available in [43].

6 ACKNOWLEDGMENTS

This work is supported by projects KC-INTELINSYS ERDF ITMS 26240220072, CLAN APVV-0809-11, EGI-Engage EU H2020-654142, VEGA 2/0054/12 and CVR ITMS 26240220082. Simulations and technical realization were achieved on the hardware equipment obtained within SIVVP ERDF ITMS 26230120002. We would like to thank to Dr. Gibala and Dr. Tóthová from DHI-Slovakia [21] and BVS [22] colleagues for collaboration, scenarios and consultations on hydraulic domain.

REFERENCES

Giang Nguyen is a scientific researcher at Institute of Informatics, Slovak Academy of Sciences with main research topics include distributed computing and knowledge discovery. She received MSc. and PhD degree in Applied Informatics from Slovak Technical University in Bratislava. She is (co-)author of numerous scientific papers and has participated in EU, international and national research projects. She also is a member of program committees, reviewer for international scientific conferences.

Viera Šípková is a researcher at the Institute of Informatics of Slovak Academy of Sciences. She received the MSc. degree in mathematics and the RNDr. degree in Computer Science at the Comenius University in Bratislava. Her research deals with parallel and distributed computing technologies focused on developments and porting complex scientific applications. She has more than 10 years working experience at the Vienna University and Vienna University of Technology and has participated in solving of many national and international research projects.

Peter Krammer graduated from the Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, and is currently a researcher and a Ph.D. candidate at the Institute of Informatics of the Slovak Academy of Sciences. His research interests include data mining and machine learning. He is (co-)author of several scientific papers and has participated in international and national research projects.

Ladislav Hluchý (Assoc. Prof., Ing., PhD.) is the head of the Parallel and Distributed Computing Department (IISAS), the director of II SAS (Institute of Informatics, Slovak Academy of Sciences) for more than 10 years, R&D Project Manager, coordinator and WP leader in more than 20 EU FP projects and outstanding national R&D projects, a member of IEEE, e-IRG, EGI Council, the editor-in-chief of the CC journal, (co-)author of scientific books and numerous scientific papers.
Viet Tran is a scientific researcher at the Institute of Informatics, Slovak Academy of Sciences with research focuses on distributed computing and cloud computing. He received MSc. and PhD degree from Slovak Technical University in Bratislava. He has participated in a number of EU, international and national research projects as a team leader, or work-package leader. He is scientific coordinator of several national projects, (co-)author of scientific books and more than 100 scientific papers, member of program committees, reviewer for international scientific conferences.

Miroslav Dobrucký is a researcher at the Institute of Informatics of Slovak Academy of Sciences. He received Ing. degree from Slovak Technical University in Bratislava in 1986. His main research topics include high performance and distributed computing (MPI, grid, cloud). He is (co-)author of scientific papers and has participated in EU, international and national research projects.

Ondrej Habala graduated from the Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava in 2001 and since then is a researcher at the Institute of Informatics of the Slovak Academy of Sciences. His research interests include complex distributed systems, cloud computing and data analytics including process mining. He is (co-)author of numerous scientific papers and has participated in international and national research projects.