Application Recovery in Parallel Programming
Environment*

G. T. Nguyen!, V. D. Tran!, and M. Kotocova?

! Institute of Informatics, SAS, Dubravska cesta 9, 84237 Bratislava, Slovakia
giang.ui@savba.sk
2 Department of Computer Science, FEI STU, Ilkovicova 3, 81219 Bratislava,Slovakia

Abstract. In this paper, fault-tolerant feature of TOPAS parallel pro-
gramming environment for distributed systems is presented. TOPAS
automatically analyzes data dependence among tasks and synchronizes
data, which reduces the time needed for parallel program developments.
TOPAS also provides supports for scheduling, load balancing and fault
tolerance. The main topics of this paper is to present the solution for
transparent recovery of asynchronous distributed computation on clus-
ters of workstations without hardware spare when a fault occurs on a
node. Experiments show simplicity and efficiency of parallel program-
ming in TOPAS environment with fault-tolerant integration, which pro-
vides graceful performance degradation and quick reconfiguration time
for application recovery.

1. Introduction

Advances in information technologies have led to increased interest and use of
clusters of workstations for computation-intensive applications. The main advan-
tages of cluster systems are scalability and good price/performance ratio, but
one of the largest problems in cluster computing is software [5]. PVM [14] and
MPI [15] are standard libraries used for parallel programming for clusters and
although they allow programmers to write portable high-performance applica-
tions, parallel programming is still difficult. Problem decomposition, data depen-
dence analysis, communication, synchronization, race condition, deadlock, fault
tolerance and many other problems make parallel programming much harder.
TOPAS (Task-Oriented PArallel programming System, formerly knows as
Data Driven Graph - DDG [9][10][11]) is a new parallel programming environ-
ment for solving the problem. The objectives of TOPAS are: making parallel
programming in TOPAS as easy as by parallel compilers, with the performance
comparable with parallel programs written in PVM/MPI; making parallel pro-
grams structured, easy to understand and debug, and to allow error checking at
compilation time for removing frequent errors; providing support for optimiza-
tion techniques (scheduling and load balancing); providing facilities for Grid

* This work is supported by the Slovak Scientific Grant Agency within Research
Project No. 2/7186/20





