
Distributed Static Mapping and Dynamic Load Balancing
Tools under PVM

L. Hluchý, M. Dobrucký, D. Dobrovodský

Institute of Computer Systems, Slovak Academy of Sciences
Dúbravská cesta 9, 842 37 Bratislava, SLOVAKIA

e-mail: upsyhluc@savba.sk

Abstract: This paper describes the static and dynamic task allocation tools in PVM environment for distributed
memory parallel systems. For the static mapping the objective function is used to evaluate the optimality of the
allocation of a task graph onto a processor graph. Together with our optimization method also augmented simulated
annealing and heuristic move exchange methods in the distributed form are implemented. For dynamic task
allocation the semidistributed approach was designed based on the division of processor network topology into
independent and symmetric spheres. Distributed static mapping (DSM) and dynamic load balancing (DLB) tools are
controlled by user window interface. DSM and DLB tools are integrated together with software monitor (PG_PVM) in
GRAPNEL environment.

Optimal planning of parallel program execution in a distributed memory parallel computer (DMPC) solves the
response speed. Optimal allocation comes out from the assumption that the program execution time depends upon
uniform load of the processors and upon interprocessor communication minimization. In this paper, our attention is
concentrated on the diffusion method for static mapping and on the semidistributed approach for the dynamic task
allocation. In our distributed static mapping tool also augmented simulated annealing and heuristic move exchange
methods are implemented [1], [2]. To specify an appropriate optimization goal it is necessary to create a cost function,
which provides a realistic evaluation of the communication and computation overhead. For the given graphs S (task
graph) and H (hardware graph), mapping M, the general form of the cost function CF is proposed as the combination
of two parts - so called vertex cost function Fvertex and edge cost function Fedge:

CF M t F M t F M tvertex edge(,) (,) (,)==== ++++

where variable t is duration of the iteration step of the mapping algorithm. Fvertex(M,t) expresses the effect of
computation loads so that individual physical processors would be loaded in a uniform way. Fedge(M,t) expresses the
effect of communication volume on allocation so that allocation should ensure the minimum of external
(interprocessor) communications.
The principle of our mapping approach [3] can be represented by the following procedure: In the starting condition all
tasks are located on the root node of the DMPC. The tasks are transferred by centrifugal force f1 (following from the
requirement of uniform processor load), against which centripetal force f2 is acting, trying to keep the processes with
mutual communication as close to each other as possible. This way, uniform load is obtained and this method can be
considered as an improvement of the "pure" load balancing method. The resulting sum of forces is a vector with
components for each task stored in a node and directed to each communication link. A task and a direction with
maximum (positive) value is chosen. The following relation is the definition of changes in the cost function, where α
(t)=const. and function g(t) hides the weight coefficient (where t is the duration of iteration step):

∆∆∆∆CF M t f t g t f t() (). () (). ()==== ++++αααα 1 2

For dynamic load balancing we have chosen the compromise between centralized and distributed approach [4]. The set
of processors is divided into independent symmetric regions, called spheres. In each sphere, a processor equidistant
from all other processors is selected as the scheduler for that sphere. Cumulative load information for each sphere is
exchanged among the independent schedulers. Using knowledge about load of local nodes and information from other
schedulers, the scheduler can place a requested task on the appropriate local node or transfer it into a less loaded
sphere. Dividing the set of nodes into spheres considers granularity of the tasks. In the problems with small granules,
the average lifetime of the process is short. Tasks arise and extinct more frequently than those in the problem with big
granules. So the sphere served by one scheduler should be smaller in a way to avoid overload of the central node.

Block scheme in Fig.1 represents the integration of GRAPNEL visual programming tool with DSM & DLB tools and
with software monitor PG_PVM (the measurement of load and communication costs). The details about the
GRAPNEL, GRP2C, GRP file blocks are described in [5], [6], [7]. The PVM loader represents the process which starts
an application according to the options (with or without Dynamic Load Balancing (DLB) and applies mapping vector.
In the case if DLB is chosen, PVM loader at first starts DLB main process and sends to it the mapping vector
generated in DSM tool. After starting the DLB process, PVM loader starts the application main process.

Fig.1. Block scheme of the integration DSM & DLB tools with visual programming tool

References
[1] KVASNICKA V., POSPÍCHAL J., BISKUPIC S.: Task Allocation Problem Solved by Augmented Simulated

Annealing. Central European Journal for Operation Research and Economics, 1994.
[2] SELVAKUMAR S., MURTHY S.R.C.: An efficient heuristic algorithm for allocation parallel programs onto

multicomputers. Microprocessing and Microprogramming, Vol.36, 1992/93, pp. 83-92.
[3] HLUCHÝ L., DOBRUCKÝ M., DUDÁK M.: Solving Method for Optimal Load Balancing and Communication

Minimisation. In: Plander I. (Ed.): Proceedings of the Sixth International Conference on Artificial Intelligence
and Information - Control Systems of Robots, World Scientific 1994, pp.297-302.

[4] AHMAD I., GHAFOOR A.: Semi-Distributed Load Balancing for Massively Parallel Multicomputer Systems.
IEEE Trans. on Software Engineering, Vol. 17, No. 10, October 1991, pp. 987-1004

[5] High Perfomance Computing Tools for Industry, Contract No CP-93-5383, Progress Report No1, April 1995.
[6] High Perfomance Computing Tools for Industry, Contract No CP-93-5383, Progress Report No2, October 1995.
[7] High Perfomance Computing Tools for Industry, Contract No CP-93-5383, Progress Report No3, April 1996.

filter

GRP2CGRAPNEL

GRP File: GRAPNEL Code C/PVM Code

DSM
PVM Loader

GRPPARS

Mapping vector

PG_PVM

npiclTrace File:

ExecutionDLB

