
Secure Agent Architecture for Wireless Devices

Mgr. Michal Laclavik, Dipl. Ing. Zoltan Balogh, Dipl. Ing. Ladislav Hluchy CSc.
Slovak Academy of Sciences, Institute of Informatics

Dubravska cesta 9, Bratislava
Slovakia

ABSTRACT

In this paper we are giving proposal for secure agent
architecture for wireless devices. We focus mainly on
security protection from the system itself as well as a
different security view on distributed services and
protection of data passed to those services. In addition, we
describe possible applications of the architecture and
implement fundamental parts of the architecture.

KEY WORDS: software agents, architecture,
wireless, security

1. INTRODUCTION

Everyone can see how cell phones and other mobile and
wireless devices are taking their place in an every day life
of people. The wireless devices are becoming more and
more sophisticated, multifunctional and advanced. We
think that the next step will be creating software platform
for cell phones. This way, different software makers can
start developing programs for cell phones and users can
better customize their devices and its usage. Such
platforms have been already developed for Palms, Pocket
PCs and also some cell phone communicators such as
Nokia 9210. None of them is agent-based platform. We
will try to explain recent security problems in non-agent
platforms.
Security is on a very good level in today’s computer or
wireless platforms. However, security against software
makers’ impacts is not solved. Any software installed on
our device can possibly take control over our data and
misuse them. When passing data through the Internet to
some Internet application, no one can steal our data over
the network but we cannot be sure what application on
other site will do with the data. In other words, security of
communication is all right but we have to trust software
makers on each side of communication.
Open Source or any software where code is available is a
great solution for trusting software on your device side.
You can check source code for any Trojan horses or
security holes. Now what about other side of the
communication pipe?
As we mentioned, agents are the best solution for solving
other side software security problem. Our solution is
simple. Software on other side will come to our device as

an agent, device will lock it inside and service of the
agent will be provided. Naturally, not all applications can
be solved using this method but most of them can. We
will discuss it more in the proposal. Proposed architecture
can be used also for non-wireless systems such as PCs,
Clusters or any Internet and intranet based systems. We
chose wireless platform because, according to our vision,
it is easier to bring new technology into wireless world.
Wireless technology for mobile phones, for example,
depends on a few cell phones producers (Nokia, Ericsson,
Motorola, Siemens, etc.). Moreover, bringing all changing
technology into PCs is not easy and almost impossible to
use. However, we will work on device independent
architecture in the future.

2. SECURITY IN RECENT MULTI AGENT
SYSTEMS (MAS)

Security is very important issue in all the systems. Many
people can see and think that security is not solved yet in
any Internet Based System. Security holes and successful
hackers impacts occur very often in the Internet world
because of programming mistakes or human failure.
Theoretically we can say “Security has been already
solved” and that is true. The problem is that it has not
been proposed and implemented yet in many systems.
We can divide security to several levels [7]:

• Security of communication
• Security of system against outside impacts
• Access rights
• Approving users, agents and others
• Security against inside software and other side

software

Security of Communication. We can provide this by using
SSL what is a standard encryption method used for
example for Internet Banking. Securing of
communication in MAS is described in our Security
proposal. KQML [4][5] is used as communication
language in our experiments and our proposal.

Security of System Against Outside Impacts. Choosing a
right and secure platform with installed security patches
can solve most of those problems. In addition, some
access restrictions must be set up. In MAS based on Java,
implementing a good security manager can solve this.
[2][5]

Client Based System

Client Application

Encoded data

Server Based System

Server Application

Encoded data

Third
Parties

Access Rights. A very important thing is securing against
inside impacts. We need to define permissions for a
certain level for people, agents etc. Also its
communication with system has to be encrypted by public
private key method.

Approving Users, Agents and Others. Approving
someone, who communicate is important. Even if we are
securing communication using the public-private key
method, we want to be sure that agent on the other side is
the one, which we expect to be. Certification authorities
take care of this.
In our secure communication proposal, [11] central or
distributed database of agent public keys (DPK) is taking
this place. Each Agent Place or each agent who has a
public key has to have this key stored in this DPK with its
information. When new agent gets created, the public key
is generated and sent to DPK by its creator with its
information. DPK Security Agent can represent DPK.
Each agent has standard method to access DPK agent by
secure connection to get confirmation about public keys
of other agents.

Security Against Inside Software and Other Side Software
is the only unsecured spot in today’s systems. This article
tries to answer this problem.

3. PROPOSAL FOR AGENT
ARCHITECTURE FOR WIRELESS
DEVICES.

Overview of the problem
There are various applications of Intelligent Agents. MAS
already supports communication, security managers, or
secure migrating. What is not supported is protecting
agents and information against system itself.

Let us describe those problems:
Here is an example: somewhere on the Internet is a
service (data + application)
We will access this application by Internet browser.
Application will work on https protocol in a way all
communication between user and application is secured.

Figure 1

As you can see on the Figure 1, Client System or
Applications as well as Server System and applications
can send any data to the third parties over the network.

In our proposal we are trying to secure those unsecured
spots.

Proposal
Agent technology is suitable for this because service
provided by a service provider can be brought as an agent
to our device and act there. Also, on our side, service
holder agents can secure device because only they have
access to network, screen, file system, etc.

Our architecture has four key elements.

- Environment where agents acts – Multi
Agent System e.g. Java Based

- Service holder agents
- Information and security agent
- Foreign service agent

Environment
Environment must be some Agent based programming
environment, where code of this environment is available.
Environment has its security manager and certain devices
such as screen, network, file system etc. are available only
to service holder agents.
In the real life, environment code should be available,
signed and proved by different software producers for any
security holes. Signatures can be done similar way as
signatures of active X controls or other software. A user
can check this way that Environment is all right, but
except of this he/she can see the source code and look for
possible security holes and Trojan horse itself.

Service Holder Agents (SHA)
holds its service. They communicate with Information and
Security Agent (ISA) only and if ISA passes them foreign
service agent (FSA) identifier, they can communicate
directly with FSA. ISA passes also allowed
communication data (protocol) to SHA. Thus FSA cannot
misuse SHA. SHAs can communicate between
themselves but always through ISA.

Information and Security Agent (ISA)
ISA is designed to communicate with the outside world,
with a user and also Foreign Service Agents (FSA). FSAs
can use SHAs only through ISA.

Foreign Service Agent (FSA)
FSA is service brought by network or whatever
connection into environment.
FSA can be brought by different ways

- If a user wants to use some service, he/she makes
request to ISA. ISA contacts FSA on some other
device on the network. Then FSA comes into
environment by Network Service Holder Agent
and FSA can start communication with ISA.

- If FSA wants to come to environment, it
connects to it and starts communicating with
ISA. ISA puts it in a queue, refuses FSA or starts
communication with FSA.

FSA is destroyed after all or its incoming instance can
migrate into other device.

Figure 2 - Architecture

4. IMPLEMENTATION AND
EXPERIMENTS

Over 80% of recent MAS systems are based on Java that
is the most appropriate language for Agents. We build our
experiments on IBM Aglets [6] agent system and IBM
JKQML class. However, the research and results will be
useful for any other Java based agent system. [3]
The following reasons justify Java Programming
Language being ideal programming language suitable for
our purposes:

• Java supports secure migration of classes.
• Interfaces to systems “speaking” KQML [4] are

available for Java.
• Java is platform independent.
• SQL interfaces to databases are implemented.

There are development environments available for Java
such as Borland JBuilder, Visual Café etc.
It means implementation of our proposal for Aglets will
be usable with little modifications in all other Java Based
Agent System.

Why Do We Use Aglets?
Aglets were originally created by IBM Japan. Currently it
is under GPL (general public license) as Open Source
Aglets.org project. Aglets are multi-agent system. An
aglet [6] [2] is a Java object that can move from one host
on the Internet to another. An aglet that executes on one
host can suddenly halt execution, dispatch to a remote
host, and resume execution there. When the aglet moves,
it takes along its program code as well as its state (data).
A built-in security mechanism makes it safe for a
computer to host entrusted aglets. Aglets are still under
development, which is promising for implementing new
features. We decided to use aglets for our experiments.

Aglets do not support KQML but using IBM JKQML
class we can solve this. [8] Aglets are based on Java that
is also very suitable for us.

We focused mainly on wireless systems but we are doing
these experiments on regular PC’s.

• Wireless connection is replaced by regular
network based on IP protocol

• Screen of wireless device is replaced by Java
window

• Keyboard can replace device keyboard
• Mouse can replace some pointing device.
• All other conditions are almost same as it would

be on wireless devices.

Classes
All implementation what we did so far are just very
limited examples. All our classes are extended of Aglet
class and they support basic features of secure
communication based on RSA and KQML. As an
environment we use Aglets with well-defined security
manager.
Our security manager is not yet defined perfect but we are
working on it. Our goal is not to create functional
commercial platform but to show functionality of our
proposal on existing MAS with some simple
implementation.

SHA Service Holder Agent extended class Aglet. It
supports basic features of secure
communication based on RSA and KQML. It
supports communication with Information and
Security Agent. Also basic methods for
communication with environment are defined
for overwriting. Such as write, read etc. So far
it supports very basic features. SHA consists of
public key to ISA.

ISA Information and Security Agent extend class
Aglet. Communication with SHAs and FSAs.

FSA Foreign Service Agent. It just supports
migrating, which is limited by ISA and has
knowledge of the same communication
protocol as ISA – KQML is used in this case.
Also it has method returning identification
number of current ISA.

5. EXAMPLES CLOSE TO REALITY

Sending Postcards
When we want to send a postcard by some website, we
have to write our data such as name, some wishes and
also an email address of a receiver. Now let us bring this
application into our architecture. ISA makes request to
certain FSA, which provides service of the Internet
postcard. FSA migrates into Environment of our device. It
communicates over ISA and SHA of display with user. A
user chooses a postcard and writes text and destination of
postcard. FSA creates an FSA, which holds created

FSA

Mobile
Screens

SHA
Network

SHA
Phone

#s

ISA

SHA
Screen

Phone
Book

Network
Access

postcard in html for example, and this new FSA can be
signed by signature SHA with user signature. New FSA is
sent to its destination and original FSA is destroyed. Now
it depends on destination user if he/she accepts FSA with
postcard and views it. After viewing this FSA is
destroyed.
This way neither original nor postcard FSA can pass any
data to the third party. On the other hand original FSA can
view some commercial on user screens. This way sending
of postcard means benefit for FSA provider.

Buying a Book
This is a bit different example but we will try to explain it
by our architecture.
Some agent classes can be stored or deactivated in our
device. When we wanted to buy something in the past, we
looked on Internet for such agent and made sure it does
only what we want. Now we already have buying agent in
our device A. FSA (buying agent) is now not foreign but
“ours”. By ISA and device screen it will ask for a name of
a book, a price range and delivery address from the user.
We do not want to pass delivery address to device B so
we will encrypt it with our private key and public key of
post office. FSA leaves device to certain bookstore or
starts to search for some stores (it can visit stores from the
past for example.). FSA will find the book on device B,
negotiate about price, agree or refuse it. If it agrees on the
price, FSA will pass encrypted delivery address to ISA on
B. This way device B can ship a book to the post office
with encrypted delivery address and the post office will
know where to ship it but device B cannot misuse our
address. ISA on hosted B device can allow agent to send
price and payment code back to device A. ISA on A
device will activate payment agent and payment agent
will make transaction. ISA on B device will check if
payment was made. If yes, it will ship the book. If device
B did not pass any data except of price to our FSA agent,
this can be return back to us with additional information
about founded bookstores but it can be also disposed by
device B.

6. CONCLUSION

When building commercial application, security is the
most important issue. We can see how a lot of personal
information is misused for different purposes. Solving of
those security problems is extremely important. We
proposed Secure Agent Architecture for Wireless devices
because agents seem to be promising technology to solve
these problems. We implemented main parts of our
proposal and we described some possible applications for
this platform. In our future research we will focus on
solving other security problems brought by our proposal
such as stealing of Foreign Service Agent by our
environment and also we will work on proposing
Distributed databases based on our agent architecture.
As we already mentioned, we chose wireless platform
because, according to our vision, it is easier to bring new
technology into wireless world. However, we will work
on device independent architecture in the future.

REFERENCES

[1] Certification Authority – http://www.verisign.com
[2] Lange, D.: Programming Java Mobile Agents with
Aglets. Addison-Wesley, 1998. Canada
[3] Balogh, Laclavik, Hluchy, : Model of Negotiation and
Decision Support for Goods and Services, ASIS 2000
[4] KQML Website - http://www.cs.umbc.edu/kqml/
[5] FIPA: Foundation for Intelligent Physical Agents
Geneva, Switzerland 1997
[6] IBM Aglets - http://www.trl.ibm.co.jp/aglets/
[7] Laclavik, M.: Negotiation and Communication in
Agent Systems, 2001
[8] JKQML IBM -
http://www.alphaworks.ibm.com/tech/JKQML
[9] Grasshopper - http://www.grasshopper.de/
[10] TCL -
http://agent.cs.dartmouth.edu/general/agenttcl.html
[11] Laclavik, M.: Secure Inter-agent Negotiation and
Communication, ICETA 2001

