
SECURE INTER-AGENT NEGOTIATION AND COMMUNICATION*

Mgr. Michal Laclavik, Dr. Ladislav Hluchy
Slovak Academy of Sciences
Dubravska cesta 9
Bratislava
Phone/Fax: +421 2 54771004
e-mail: laclavik.ui@savba.sk, hluchy.ui@savba.sk

Abstract. In this paper we are giving proposal for secure inter-agent communication and negotiation
based on asymmetric cryptosystems and Certification Authorities. This security approach is common
and widely used in Internet based systems and protocols such as ssh or https but never used in aglets
agent systems for securing agent negotiation.

Keywords. Agents, Security, Negotiation, Communication

* This work was supported by the Slovak Scientific Grant Agency within Research Project No. 2/7186/20

 INTRODUCTION

Agents and agent systems are giving many possibilities for
creating new generation applications. Communication and
negotiation play important role in every agent application.
Many people have worked on creating communications
standards such as KQML [3] and ACL [4][5] and have
integrated them to most of Agent Systems. Those standards
are on very high level and supports many features. KQML
standard is based on plain text messages with tags. If we
want to use agents in real applications we have to solve also
security of negotiation. Security in agent systems focuses
mainly on migrating of agents and on security of agent
environment. We did research about 50 agents systems and
no one of them has solved security of communication,
except for new version of Grashopper [9] Agent System.
Even Grasshopper system focuses only on encrypting of
messages but do not have support for agent certificates and
authorities. We made proposal to solve this problem, based
on standard methods such as asymmetric crypto-systems
and certification authorities. PhD work Security of Agents
[1] was good source, dealing with encrypting classes
ElGamal [1] and secure migration of classes.
The similar idea was used in Agent Tcl [10] from
Dartmouth University, where migrating agents are
encrypted and authenticated using Pretty Good Privacy
(PGP). Access restrictions are imposed on the agent based
on its authenticated identity. Safe Tcl enforces the access
restrictions. This method was use mainly because of TCL is
scripting language so anyone could easy steal agent when
migrating. TCL is one of first Multi-Agent Systems. Its
secure migrating focuses us on researching and developing
secure inter-agent communication and negotiation.

COMMUNICATION

Communication [3] [4] [5] is basically used for
negotiating. All of multi-agent systems have to use kind of
communication-negotiation protocol. Negotiation needs a
communication protocol for agents to understand each
other. There are many communication languages and
protocols. Lot of agents systems are building their own
ones. The most usable is getting KQML standard and also
FIPA ACL standard. Both ACL and KQML is plain text
communication. This way communication between agents
can be stolen over the network. Almost no MASs solve
problem of security of communication. We will focus on
this area.

KQML
KQML or the Knowledge Query and Manipulation
Language [3] is a language and protocol for exchanging
information and knowledge. It is part of a larger effort, the
ARPA Knowledge Sharing Effort, which is aimed at
developing techniques and methodology for building large-
scale knowledge bases, which are sharable and reusable.
KQML is both a message format and a message-handling
protocol to support run-time knowledge sharing among
agents. KQML can be used as a language for an application
program to interact with an intelligent system or for two or
more intelligent systems to share knowledge in support of
cooperative problem solving.

Agent Communication Language
The FIPA Agent Communication Language (ACL) [4] [5]
is based on speech act theory: messages are actions, or
communicative acts, as they are intended to perform some
action by virtue of being sent. The specification consists of
a set of message types and the description of their

pragmatics, that is the effects on the mental attitudes of the
sender and receiver agents. Every communicative act is
described with both a narrative form and a formal
semantics based on modal logic. The specifications include
guidance to users who are already familiar with KQML in
order to facilitate migration to the FIPA ACL.
The specification also provides the normative description
of a set of high-level interaction protocols, including
requesting an action, contract net and several kinds of
auctions etc.

Example of unsecured communication in Aglets
As we already mentioned, security of communication is not
solved in aglets. We are showing an example of stealing
message across the network when an agent sends message
to another agent. We installed ASDK [6] server on two
machines. On third machine which is connected to the
network on the same HUB we tried to steal the plain
message and we succeed.
To be more explicit, we are sending only plain text
message “Hello message” (Picture 1) instead of some
KQML message.

Picture 1

This messages is received by other ASDK server:
To demonstrate stealing a message we used demo version
of program NetSpy on the third machine.

Picture 2

On the picture 2 you can see text “Hello message” which
was send and then received by second and third machine.
To protect agent communication we are giving proposal of
secure inter-agent communication.

PROPOSAL OF SECURE NEGOTIATION AND
COMMUNICATION IN MAS

Security is very important issue in all systems. Many people
can see and think that security is not solved yet in any
Internet Based System. Security wholes and succeed
hackers impacts are very often in the Internet world,
because of programming mistakes or human failure.
Theoretically we can say “Security is solved already” and it
is true. The problem is that it has not been proposed and
implemented yet in many systems. We can divide security
to several levels [7]:

• Security of communication
• Security of System against outside impacts
• Access Rights
• Approving Users, Agents & Others

Security of Communication. We need to secure
communication between citizens and our system. We can
provide this by using SSL what is a standard encryption
method used for example for the Internet Banking. Securing
of communication in MAS is described below.

Security of System Against Outside Impacts. Choosing
right and secure platform with installed security patches can
solve most of those problems. In addition, some access
restrictions must be set up.

Access Rights. Very important is securing against inside
impacts. We need to define permissions for certain level for
people, organizations etc. Also their communication with
system has to be encrypted by public private key method.

Approving Users, Agents and Others - DPK Security Agent
Approving someone, who negotiate or communicate is very
important. Even if we securing communication by public-
private key method, we want to be sure that agent on the
other site is the one what we think it is. For this purpose it is
very important to make central or distributed database of
agent public keys (DPK). Each Agent Place or each agent
who has public key has to have this key stored in this DPK
with its information. When new agent get created public
key is generated and send to DPK by its creator with its
information. DPK Security Agent can represent DPK. Each
agent has standard method to access DPK agent by secure
connection to get confirmation about public keys of other
agents.

Securing of Inter-Agent Negotiation and Communication
KQML communication is not encrypted what means that
anyone on the way to agent destination can read its
communication. Because of this we have to encrypt
communication. This can be possibly solved by public-
private key encryption. Maybe some class, which
implements this logic into agent communication, can be
found. Using public-private key is standard way to protect
any kind of data moving across network. If we will use
public-private key encryption, we have to solve also
generating those keys and remake standard communication
functions of agent system. [7]
There are two kinds of cryptosystems: symmetric and
asymmetric. Symmetric cryptosystems use the same key

(the secret key) to encrypt and decrypt a message, and
asymmetric cryptosystems use one key (the public key) to
encrypt a message and a different key (the private key) to
decrypt it. Asymmetric cryptosystems are also called public
key cryptosystems. Symmetric cryptosystems have a
problem: how do you transport the secret key from the
sender to the recipient securely and in a tamperproof
fashion? If you could send the secret key securely, then, in
theory, you wouldn't need the symmetric cryptosystem in
the first place -- because you would simply use that secure
channel to send your message. Frequently, trusted couriers
are used as a solution to this problem. Another, more
efficient and reliable solution is a public key cryptosystem,
such as RSA, which is used in the popular security tool
PGP.

RSA Encryption
The challenge of public-key cryptography is developing a
system in which it is impossible to determine the private
key. This is accomplished through the use of a one-way
function. With a one-way function, it is relatively easy to
compute a result given some input values. However, it is
extremely difficult, nearly impossible, to determine the
original values if you start with the result. In mathematical
terms, given x, computing f(x) is easy, but given f(x),
computing x is nearly impossible. The one-way function
used in RSA is multiplication of prime numbers. It is easy
to multiply two big prime numbers, but for most very large
primes, it is extremely time-consuming to factor them.
Public-key cryptography uses this function by building a
cryptosystem, which uses two large primes to build the
private key and the product of those primes to build the
public key.

Algorithm:

• Find P and Q, two large (e.g., 1024-bit) prime
numbers.

• Choose E such that E is less than PQ, and such that
E and (P-1)(Q-1) are relatively prime, which
means they have no prime factors in common. E
does not have to be prime, but it must be odd. (P-
1)(Q-1) can't be prime because it's an even
number.

• Compute D such that (DE - 1) is evenly divisible
by (P-1)(Q-1). Mathematicians write this as DE =
1 (mod (P-1)(Q-1)), and they call D the
multiplicative inverse of E.

• The encryption function is encrypt(T) = (T^E) mod
PQ, where T is the plaintext (a positive integer)
and ^ indicates exponentiation.

• The decryption function is decrypt(C) = (C^D)
mod PQ, where C is the cipher text (a positive
integer) and ^ indicates exponentiation.

Your public key is the pair (PQ, E). Your private key is the
number D (reveal it to no one). The product PQ is the
modulus (often called N in the literature). E is the public
exponent. D is the secret exponent.
You can publish your public key freely, because there are
no known easy methods of calculating D, P, or Q given
only (PQ, E) (your public key). If P and Q are each 1024
bits long, the sun will burn out before the most powerful

computers presently in existence can factor your modulus
into P and Q.

Proposed Secure Communication
Encrypted agent communication start as described: Agents
will exchange their public keys by regular KQML requests,
which are not encrypted yet. Each communication will start
like following [7]:

1. Request for communication from agent A to B
with A’s public key.

2. Encrypted request from agent B to DPK agent to
get approval and other information about agent A
and answer from DPK Agent.

3. Accepting request for communication and sending
public key from agent B to A.

4. Encrypted request from agent A to DPK agent to
get approval and other information about agent B
and answer from DPK Agent.

5. All upcoming communication can by encrypted
since this point.

Part of agent creation should be generating of those public-
private pair key.
Agent migration securing can be solved by similar
algorithm. Public and private keys of agent and destination
place are used due to migration.
Agent Place Environment securing highly depends of used
agent environment. If some Java based agent environment
is used, Java Security Manager can be implemented. Still
security levels and access priorities have to be defined.

Figure 3

IMPLEMENTING RSA AND DPK INTO AGLETS

Over 80% of recent MAS systems are based on Java that is
the most appropriate language for Agents. We build our
experiments on IBM Aglets [6] agent system and IBM
JKQML class. However, the research and results will be
useful for any other Java based agent system.
The following reasons justify Java Programming Language
being ideal programming language suitable for our
purposes:

• Java supports secure migration of classes.
• Interfaces to systems “speaking” KQML [3] are

available for Java.
• Java is platform independent.
• SQL interfaces to databases are implemented.

There are development environments available for Java
such as Borland JBuilder, Visual Café etc.
So implementation of our proposal for Aglets will be usable
with little modifications in all other Java Based Agent
System.

Why Do We Use Aglets?
Aglets were originally created by IBM Japan. Currently it is
under GPL (general Public license) as Open Source
Aglets.org project. Aglets are multi-agent system. An aglet
[6] [2] is a Java object that can move from one host on the
Internet to another. That is, an aglet that executes on one
host can suddenly halt execution, dispatch to a remote host,
and resume execution there. When the aglet moves, it takes
along its program code as well as its state (data). A built-in
security mechanism makes it safe for a computer to host
entrusted aglets. Aglets are still under development, which
is promising for implementing new features. We decide to
use aglets for our experiments. Aglets do not support
KQML but using IBM JKQML class can solve this. [8]
Aglets are based on Java that is also very suitable for us.

We created following classes to secure agent
communication:

Class Crypto. Supporting asymmetric cryptosystem RSA
based on ElGamal [1] creating on this class automatically
include public key and address of Security Agent. This is
the reason why every agent using this class can get public
keys from DPK by secure way

Class DPK. Database of Public Keys based on MySQL
contains interface to this database, also supports functions
for authorizing public keys, for registering etc.

Class SecurityAgent. Only this agent class is permitted to
access DPK. Usually Agent Place should have one DPK
and at least one Security Agent.

Described classes are not fully implemented but it works
well for testing purposes. We assume that in time of
presenting this paper whole implementation will be
completed and verified.

CONCLUSION AND FUTURE WORK

As we already mentioned, no real application can be built
based on an agent if security of communication is not
solved. We are giving proposal and custom implementation
to solve this problem. This technique, asymmetric
cryptosystem based on RSA is known and widely used in
other areas and convince us that bringing this technique into
agent negotiation will be successful to secure
communication. Agents have to communicate between
different agent systems and KQML and ACL standards fit
well this purpose. Those standards works with plain text
messages so we have to secure them which we solved by
this proposal.
In our feature work we will focus on verification of our
implementation and on its use in some projects. Also we
will try to find way how to connect DPK between each

other and how to connect it with big certifications
authorities as Verisign or Thawte
We intend to make Negotiation safer and usable for real
applications.

REFERENCES

[1] PhD work Security of Agents, 1997

[2] Lange, D.: Programming Java Mobile Agents with
Aglets. Addison-Wesley, 1998. Canada

[3] FIPA ACL Message Structure Specification, 2000

[4] KQML Website - http://www.cs.umbc.edu/kqml/

[5] FIPA: Foundation for Intelligent Physical Agents
Geneva, Switzerland 1997
[6] IBM Aglets - http://www.trl.ibm.co.jp/aglets/

[7] Laclavik, M.: Negotiation and Communication in Agent
Systems, 2001

[8] JKQML IBM -
http://www.alphaworks.ibm.com/tech/JKQML

[9] Grasshopper - http://www.grasshopper.de/

[10] TCL -
http://agent.cs.dartmouth.edu/general/agenttcl.html

BIOGRAPHIES

Michal Laclavik received the Mgr. (MSc.) degree in
Computer Science and Physics from Faculty of
Mathematics and Physics, Comenius University in
Bratislava in 1999. His research focus on Negotiation and
Communication in Multi-Agent Systems.

Ladislav Hluchy received the Dipl.Ing. (MSc.) degree
from the Slovak Technical University Bratislava in 1975,
and the CSc. (Ph.D) degree in computer science from
Slovak Academy of Sciences in 1986. Hi is a member of
IEEE Computer Society, IEEE Communication Society. His
research interests include algorithms and methods for high
performance computing.

