
Ontology based Text Annotation – OnTeA
Michal Laclavik1, Martin Šeleng1, Emil Gatial1, Zoltan Balogh1, Ladislav Hluchy1,

1Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9,
Bratislava, 845 07, Slovakia

Abstract: In this paper we describe a solution for the ontology based text annotation
(OnTeA) tool. The tool analyzes a document or text using regular expression
patterns and detects equivalent semantics elements according to the defined domain
ontology. The solution has been used, evaluated and it is further developed within
the K-Wf Grid and the NAZOU projects.

1. Introduction

When documents such as HTML, or text are processed by a computer system, it needs to
understand the document structure. Web documents are structured but their structure is
understandable mainly for humans, which is the major problem of the Semantic Web. The
OnTeA tool tries to create structured semantic metadata from such documents according to
the application domain ontology model. Thus OnTeA does not create a new ontology, but
tries to map documents with its equivalent in the defined application ontology.

Annotating is a writing-to-learn strategy to be used while reading or rereading. An
annotated text helps readers/processors to reach a deeper level of understanding. Several
annotation tools exist. Annotea [1] is a system for creating and publishing shareable
annotations of Web documents. Built on HTTP, RDF, and XML, Annotea provides an
interoperable protocol suitable for implementation within Web browsers to permit users to
attach data to Web pages so that other users may, on their own choice, see the attached data
when they later browse the same pages. The Annotea project is a part of the project
Semantic Web Advanced Development (SWAD). Unlike the Annotea system, the Ruby
annotation is stored along with the text that has to be annotated as XML tags. Some user
agents might not understand ruby mark-up or may not be able to render ruby text correctly.
In either situation, it is generally preferable to render ruby text, so that information is not
lost [2]. Other solutions and tools exist [3][4] and have been evaluated. Most of them
provide infrastructure and protocols for manual stamping documents with semantic tags.
Ontea works on documents, in particular domain described by domain ontology and use
regular expression patterns for automatic semantic annotation, where it tries to create
semantic version of text/document according to the domain ontology.

2. Methodology and the Approach

While most of annotation solutions try to find and create an object in the text or to
provide semantic tags for the reader, in Ontea we try to detect ontology elements within
existing application/domain ontology knowledge model. It means that by the Ontea
annotation engine we want to achieve the following objectives:

• Detecting Meta data from Text
• Preparing improved structured data for later computer processing
• Structured data are based on application ontology model

Ontea tool analyzes a document or text using a regular expression patterns and detects
equivalent semantics elements according to the defined domain ontology. Several cross

application patterns are defined but in order to achieve good results, new patterns need to
be defined for each application. In addition, Ontea creates a new ontology individual of a
defined class and assigns detected ontology elements/individuals as properties of the
defined ontology class. The domain ontology needs to incorporate special ontology
extension (Figure 1) used by Ontea. This extension contains one class Pattern with several
properties.

pattFullTime

pattern = Full[-]Time

hasInstance =http://nazou.fiit.stuba.sk/nazou/ontolog...

Pattern

io

pattAllTwo

pattern = ([A-Z][-A-Za-z0-9]+[]+[-A-Za-z0-9]+)

io

pattLocation

pattern = Location: ([a-zA-Z]+[]*[-A-Za-z0-9]*)

hasClass =http://nazou.fiit.stuba.sk/nazou/ontolog...

createInstance = true

io

pattAll

pattern = ([A-Z][-A-Za-z0-9]+)

io

Figure 1: Pattern ontology with several individuals from NAZOU project domain ontology

The Pattern class represents regular expression patterns which are used to annotate plain
text with ontology elements. The Pattern individual {pattern} is evaluated by a semantic
annotation algorithm. On Figure 1 we can see several simple patterns which can detect
ontology individuals by matching String properties of such individuals.

The properties of Pattern class are hasClass.Pattern, hasInstance.Pattern,
pattern.Pattern, pattern.createInstance. The instances of the Pattern class are used to
define and identify relations between a text/document and its semantic version according to
the domain ontology, where the pattern property contains the regular expression which
describes textual representation of the relevant ontology element to be detected. The
examined text/document is processed with the regular expression for every pattern. If
property hasInstance is not empty, an individual included in this property is added to a set
of detected ontology elements. Moreover, when the hasClass property exists in the Pattern,
the RDQL query is constructed and processed to find the individuals that match the
condition:

• The individual is the class of hasClass
• a property of individual contains the matched word

When property createIndividual is set True and corresponding individual with found
keyword is not found, such individual of hasClass type is created.
The underlying principle of the Ontea algorithm can be described by the following steps:

1. The text of a document is loaded.

2. The text is proceed by defined regular expressions and if they are found,
corresponding ontology individual according to rest of pattern properties is
added to a set of found ontology individuals.

3. If no individual was found for matched pattern and createInstance property
is set, a simple individual of the class type contained in the hasClass
property is created with only property rdf:label containing matched text.

4. Such process is repeated for all regular expressions and the result is a set
of found individuals.

5. An empty individual of the class representing proceed text is created and
all possible properties of such ontology class are detected from the class
definition.

6. The detected individual is compared with the property type and if the
property type is the same as the individual type (class), such individual is
assigned as this property.

7. Such comparison is done for all properties of a new individual corresponding
with the text/document as well as for all detected individuals.

The algorithm also uses inference in order enable assignment of a found individual
to the corresponding property also if the inferred type of a found individual is the same as
the property type. The weak point of the algorithm is that if the ontology definition
corresponding with the detected text contains several properties of the same type, in this

case detected individuals cannot be properly assigned. This problem can be overcome if
algorithm is used only on creation of individuals of different property types. Crucial steps
of the algorithms as well as inputs and outputs can be seen also on Figure 2.

3. Architecture and Technology

Architecture of the system contains
similar elements as the main annotation
algorithm described above.

Inputs are text resources (HTML,
email, plain text) which need to be annotated
as well as corresponding domain ontology
with defined patterns individuals (Figure 1).
An output is a new ontology individual,
which corresponds to the annotated text.
Properties of this individual are filled with
detected ontology individuals according to
defined patterns.

Ontea works with RDF/OWL
Ontologies [5]. It is implemented in Java
using Jena Semantic Web Library [6] or
Sesame library [7]. In both implementation
inference is used to achieve better results.

Text

Set of Detected
individuals

Creating Individual

Individual with
properties

Reg. Exp.
Ontology

Ontology class

Inference

Domain
Ontology

Ontology Individual

Ontology annotation

Figure 2: Ontea Tool Architecture

4. Examples of Use

Ontea has been created in the K-Wf Grid [9] and NAZOU [10] projects. The semantic text
annotation is an important subtask in both projects. In K-Wf Grid, Ontea is used to translate
or associate text input from a user to domain ontology elements. This is used in two cases:

• When a user wants to define his/her problem by typing free text – Ontea detects
relevant ontology elements and creates a semantic version of the problem
understandable for further computer processing.

• The second case is when users use text notes for collaboration and knowledge
sharing [8]. Notes are showed to the user in appropriate context, which is detected
by Ontea.

A specific use of Ontea in the NAZOU project is described in next chapter. We provide
more detailed examples on the Job Offer Application domain because the success rate of
algorithm was measured on this problem domain.

4.1 Use of Ontea in Job Offer Application

NAZOU (Research and Development of Tools for Knowledge Discovery, Maintenance and
Presentation, SPVV 1025/04) [10] is a Slovak project. The project has been launched in
September 2004 and it is focused on discovery, maintenance and presentation of
knowledge. The Pilot application is the Job search application, where tools are used to find,
download, categorize, annotate, search and display job offers to job seekers. As stated in
the title of the project, this project focuses on development of reusable tools. One of such
tools is a tool Ontea.
 Main components of Job Offer ontology are: job category, duty location, position
type, required skills or offering company, which can be then detected by Ontea algorithm.
 On right side of figure 3 the individual of the Job Offer is created based on the se-
mantic annotation of a Job Offer document (left side of figure 3), using simple regular
expression patterns as showed on Figure 1 where main individuals can be detected by the

title property such as sillSQL or skillPHP individuals. In this example the job offer location
- New York and USA are identified by a regular expression „([A-Za-z]+)“ a „([-A-Za-z0-
9]+ []+[-A-Za-z0-9]+)“, because individual locNY has the property title „New York“,
locUS has the property title „USA“.

Location

Town

isa

Country

isa

skillSQL

Skill

io

skillXML

io

skillPHP

io

JobType

jtPermanent

iohasCountry*

locNewYork

io

locUS

io

JobOffer

job_1_html

io

hasRequirements hasRequirements hasType

hasLocation

hasRequirementshasLocation

Figure 3: On left: Web Document; On the right: Job Offer Individual Created by Ontea

 Similarly, other ontology elements are detected. Detected ontology individuals are
then assigned as properties of job offer, thus ontology instance of job offer is created out of
its text representation in the NAZOU pilot application.

5. Success Rate of Ontea Algorithm

In this chapter we discuss the algorithm success rate. As reference test data, we use
500 job offers filled in defined ontology manually according to 500 html documents
representing reference job offers. Ontea was running on the reference ontology and
reference html documents and the result was new ontology metadata of 500 job offers,
which were automatically compared with manually entered job offers ontology metadata. In
this test, Ontea used only simple regular expressions, which match from 1 to 4 words
starting with a capital letter and Ontea did not create extra new property individuals in
ontology.

Table 1. The comparison of results computed using the Ontea tool with reference data. The count row
represents the number of job properties assigned to a job offer in reference data. The Ontea row represents the
number of detected properties by the Ontea tool. The match row represents the number of same properties in
the reference and Ontea ontology metadata.

Count 4 4 6 6 4 6 6 6 5 ... 6 6 4 4 5 4
Ontea 8 7 8 8 12 8 10 9 9 ... 7 7 6 6 7 6
Match 4 4 6 6 4 6 5 6 3 ... 5 5 3 3 4 4

Success rate % 100 100 100 100 100 100 83,3 100 60 ... 83,3 83,3 75 75 80 100

From the data in the table we can compute sample mean (2) sample variance (3) and

sample standard deviation (4), which can be considered as basic measures of success rate.

1

1
83,163%

n

i
i

x x
n =

= =∑ (2)

()22

1

1
3,222%

1

n

i
i

s x x
n =

= − =
− ∑ (3)

()2

1

1
17,95%

1

n

i
i

s x x
n =

= − =
− ∑

(4)

As we can see in Table 1, Ontea tool finds more results than it is present in
reference data. These extra found results can be relevant or irrelevant but we would have to
check all data manually. We have checked extra detected results for several randomly
chosen cases and we can say that most of found results were discovered due to duplicity in
reference data. For example, in reference data, a company offering job was in one case

“Google” and in another case “Google, Inc.”. Ontea detected both values and assigned them
to a new job offer as the job offering company, however different cases may occur, when
the found text is irrelevant; as an example can serve the “PHP” language detected as
relevant needed expertise detected from an advertisement or a header. New found elements
are in most cases relevant and they appear if there is inconsistency in reference data or if
regular expressions for a selected problem domain are not set up carefully. Due to these
facts, we show two more cases of a success rate. The basic sample characteristics can be
calculated according to above equations (2), (3), (4). If the extra results are all relevant, the
values are:

88,523%x = , 2 1,592%s = , 12,619%s = (5)

If they are all irrelevant, the values are:
56,48%x = , 2 3,298%s = , 18,162%s = (6)

6. Conclusions and Future Work

The described solution is used in the K-Wf Grid [2] and the Znalosti project to detect
relevant structured knowledge described by a domain specific ontology model in the
unstructured text. The main difference between existing annotation solutions such as
Anotea [1] is detection of ontology elements from existing domain ontology, while other
annotation solutions try to create such ontology. In the NAZOU project our solution is used
to detect structured information about job offers. In the K-Wf Grid project our solution is
used to detect a user context/problem from the text description as well as annotate user
knowledge entered in a form of text notes [8].

The archived results are quite satisfactory since the Ontea tool works with an average
success over 80%, which is shown in the previous chapter. We believe that Ontea can be
successfully used in a text analysis where semantic metadata need to be created according
to given ontology model.

This work is supported by projects K-Wf Grid EU RTD IST FP6-511385, NAZOU
SPVV 1025/2004, RAPORT APVT-51-024604, VEGA No. 2/6103/6.

References

[1] Annotea Project, http://www.w3.org/2001/Annotea/, (2001)

[2] W3C, Ruby Annotation, 2001, http://www.w3.org/TR/ruby/

[3] The Institute for Learning and Research Technology, RDF Annotations, 2001,
http://ilrt.org/discovery/2001/04/annotations/

[4] Patriarche R., Gedzelman S., Diallo G., Bernhard D., Bassolet C-G., Ferriol S., Girard A., Mouries M.,
Palmer P., Simonet A., Simonet M.: A Tool for Textual and Conceptual Annotations of Documents;
Innovation and the Knowledge Economy, Volume 2, Issues, Applications, Case Studies; Edited by Paul
Cunnigham and Miriam Cunnigham; IOS Press, pp.865-872. ISSN 1574-1230, ISBN 1-58603-563-0.

[5] W3C: Web Ontology Language OWL, 2005, http://www.w3.org/TR/owlfeatures/

[6] HP Labs and Open Source Community, Jena Semantic Web Library, 2005, http://www.sf.net/

[7] OpenRDF.org, Sesame RDF Database, 2006, http://www.openrdf.org/

[8] Laclavik M., Gatial E., Balogh Z., Habala O., Nguyen G., Hluchy L.: Experience Management Based on
Text Notes (EMBET); Innovation and the Knowledge Economy, Volume 2, Issues, Applications, Case
Studies; Edited by Paul Cunnigham and Miriam Cunnigham; IOS Press, pp.261-268. ISSN 1574-1230,
ISBN 1-58603-563-0.

[9] K –Wf Grid Consortium: K –Wf Grid IST Project Website, 2005, http://www.kwfgrid.net/

[10] NAZOU Project Website, 2006, http://nazou.fiit.stuba.sk/

[11] Laclavik M., Gatial E., Balogh Z., Habala O., Nguyen G., Hluchy L.: Semantic Annotation based on
Regular Expressions; Proceedings of ITAT 2005 Information Technologies - Applications and Theory,
Peter Vojtas (Ed.), Prirodovedecka fakulta UPJS v Kosiciach, 2005, pp.305-306. ISBN 80-7097-609-8.

